
 

 

  
Abstract—Nowadays the proliferation of IoT (Internet of Things) 

devices results in heterogeneous and proprietary sensor data formats 
which makes challenging the processing and interpretation of sensor 
data across IoT domains. Thus, to achieve syntactic interoperability 
(the ability to exchange uniformly structured data) and semantic 
interoperability (the ability to interpret the meaning of data 
unambiguously) is still an issue under research. In this paper, we 
introduce and discuss our purpose developed new script language 
called Language for Sensor Data Description (L4SDD), and the basic 
principles of our generic, ontology-based approach to achieve cross-
domain syntactic and semantic interoperability. Moreover, we 
illustrate our solutions via a real-life smart parking case study. 

Keywords— IoT, Interoperability, Data normalization, Ontology.  

I. INTRODUCTION 
E have been a witness today to the proliferation of IoT 
(Internet of Things) devices, solutions and use case 

scenarios in a myriad of domains ranging from smart home to 
production digitalization/industry 4.0. However, these are 
usually proprietary systems and solutions struggling with 
issues and challenges when interoperability is required. A 
traditional field where interoperability, or the ability of 
systems to exchange information, plays an important role is 
data network communication. Nevertheless, for using IoT data 
across domains and scenarios a broader, cross-domain 
definition of interoperability is now required [1]. 

A substantial step into this direction is the Virginia 
Modeling Analysis and Simulation Center’s Levels of 
Conceptual Interoperability Model (LCIM) [2], which defines 
three categories of interoperability, such as technical, syntactic 
and semantic interoperability [3]: 

• Technical interoperability is the fundamental ability of a 
network to exchange raw information of any kind.  

• Syntactic interoperability is the ability to exchange 
structured data between two or more machines. Here, data 
normalization is carried out. For instance, standard data 
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formats such as XML and JSON provide syntax that 
allows systems to recognize the type of data being 
transmitted or received. 

• Semantic interoperability enables systems to interpret 
meaning from structured data in a contextual manner 
(often through the use of metadata). 

To facilitate broad interoperability amidst these 
circumstances, the Industrial Internet Consortium (IIC) 
recently published the “Industrial Internet Connectivity 
Framework,” or IICF [3]. The IICF redefines the traditional 
OSI model by combining the Presentation and Session layers 
(Layers 5 and 6) in a so-called Framework layer (Fig. 1) to 
provide all of the necessary mechanisms to facilitate how data 
is unambiguously structured and parsed by the endpoints.  

 

Fig. 1  Categories of interoperability 

In this paper, we focus our attention on syntactic and 
semantic interoperability, because it can be safely assumed 
that technical interoperability is ensured by today’s systems. 
We introduce and discuss our approach to achieve syntactic 
and semantic interoperability, which are at the heart of the 
framework we have been developing at the moment. This 
framework implements on one hand a new script language for 
dynamic sensor data description and data format conversion, 
on the other hand a generic, ontology-based semantics. The 
framework can be used at different parts of an IoT system, thus 
at the edge (running on the edge gateway) or at the IoT 
platform (running in the cloud) according to the needs of the 
implemented IoT scenario. 

The rest of this paper is structured as follows. In Section II, 
we discuss syntactic interoperability, shortly overview some 
related approaches, and briefly introduce our script language. 
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In Section III, we discuss semantic interoperability, give a 
brief overview of some related standards and introduce our 
ontology-based approach to achieve semantic interoperability. 
In Section IV, we shortly demonstrate our interoperability 
solutions via a smart parking case study. Finally, in Section V 
we conclude the paper pointing out to some future directions.  

II. SYNTACTIC INTEROPERABILITY 

A. Data Normalization 
Nowadays it is getting more and more common that an 

application obtains its data from heterogeneous IoT devices. It 
is rather challenging to support different formats of data 
stemming from these devices. Thus, the data should be 
normalized or converted to a common format, which can be 
read by all the elements of the IoT system or even by different 
IoT systems leading to syntactic interoperability. 

To achieve syntactic interoperability, first we tried to create 
a static description, namely a data format definition capable of 
describing all variants of all sensor messages. It is worth to 
mention that most of these sensors are capable of sending the 
data only in their native format, i.e., they cannot convert the 
data to XML or JSON. Although the static format description 
seemed to be a good solution at first glance, we had to realize 
that it fails when we want to apply it on previously known 
industrial case studies borrowed from real-life systems. The 
source of the problem was that we had many cases, where the 
format was dependent on a particular fragment of the data, or 
the data had (pre)processing instructions for itself. For 
example, we had to support five different encoding based on 
the first two bytes of the data processed. We have realized that 
describing complex dependencies between the fragments and 
using dozens of alternative paths would result in a highly 
verbose, overcomplicated static format definition.  

Therefore, we have decided to create a dynamic scheme that 
is easier to customize and more expressive. This dynamic 
scheme, in this context, refers to our purpose developed script 
language called L4SDD, the Language for Sensor Data 
Description. L4SDD not only defines an output data format, 
but also specifies how the data is to be calculated from the 
sensor input. The converted data can later be directly stored in 
databases and processed by data analysis techniques.  

B. Overview of Related Approaches 
In order to achieve syntactic interoperability in cross-

industry projects, we need a common data format 
understandable, readable and writable by all participants. In 
order to reach this goal, some of the existing approaches focus 
on defining a universal format applicable in all scenarios and 
domains. In our case, this is not enough, since even if we 
succeed in defining such a format, the sensors cannot convert 
the data to it. Therefore, we needed a solution to transform the 
original data given in various formats to the common form.  

The Data Distribution Service (DDS) [4] is a popular data-
centric publish-subscribe protocol defined by OMG. It is 
created to handle communication between the participants, but 

it would need to create adapters for IoT devices. DDS offers a 
standard to describe the data format only, the conversion to 
this format is not considered.  

The OPC-Unified Architecture (OPC-UA) [5] is a popular 
machine-to-machine protocol for industrial automation. Its 
basic idea is promising, however at the current stage it is rather 
a pre-release standard than a working, platform independent 
solution. Most of the issues come from heterogeneous, 
incomplete implementations. 

The Sensor Markup Language (SenML) [6] developed by 
IETF is created to describe sensor measurements and devices, 
which could fit into our scenario, but SenML allows to use 
XML, JSON, Concise Binary Object Representation (CBOR) 
and Efficient XML Interchange (EXI) formats only. This is not 
suitable in our case because of the limitation of the sensors. 

The Data Format Description Language (DFDL) [7] is 
perhaps the nearest to provide a solution to our challenges. It 
is a modeling language for describing general text and binary 
data in a standard way. The schemas defined in DFDL allow 
any text or binary data to be read from its native format and 
written into a destination language. The standard has several 
implementations available and it can be integrated with several 
system technologies. Even by understanding its promising 
capabilities, we could not use DFDL. The most important 
reason for this is that DFDL implementations have a concrete 
platform to apply the conversion on and we needed more 
flexibility. Moreover, we wanted to optimize the conversion 
and to ensure its safety. By defining a new script language with 
limited, but efficient features and creating an environment 
around it (e.g., compiler, execution framework), we could 
achieve these goals easier. 

C. The Language for Sensor Data Description 
By creating L4SDD, a new, purpose developed script 

language, our primary aim was to devise a dynamic data 
description solution. Since L4SDD has been a newly created 
language, there was no compiler available for it, thus, we have 
built one based on Xtext [8].  

The compiler compiles L4SDD script definitions to source 
code (currently to JavaScript, but it can be an arbitrary 
language). The source code is then registered by the 
framework, and it is executed every time the associated sensor 
sends data. More precisely the steps of data conversion 
definition for a new sensor are the following: (i) a new L4SDD 
script is defined that describes how the input data of the sensor 
are to be read; (ii) the script is compiled to source code and the 
source code is registered as a data processor algorithm; (iii) if 
the sensor sends data, the framework iterates through the 
registered data processors, selects the appropriate ones and 
execute them; (iv) the result of the script execution is 
formatted data, which are self-describing (or at least which 
describe their own structure). The framework stores these data 
in its database. The key to store all kinds of data is the self-
describing data structure.  

L4SDD scripts consist of several sections: (i) an Output 
definition that describes the format of the output data; (ii) a 
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Filter definition that is executed at Step #3, when the 
framework tries to find scripts applicable for the certain data; 
(iii) a Mapping definition that is the conversion itself, namely 
how the output data are produced from the input data; (iv) the 
script may also contain a Params definition, where additional 
parameters can be passed (e.g., the current location), which 
can affect the result of Mapping. These data are not sent by the 
sensor to the framework, but the framework should add this 
information as an additional input parameter for the script 
when it is executed. 

The Output and Params sections can use the same language 
elements and syntax (they are static format descriptions), while 
the Filter and Mapping parts also share their language (they 
are transformation logic descriptors). The four parts together 
allows us to specify the interpretation of all kinds of sensor 
data to our universal, self-describing data format used in later 
steps of data processing. 

III. SEMANTIC INTEROPERABILITY 

A. The Meaning of the Data 
These days the data coming from IoT and/or smart devices 

are stored and communicated in many different forms. By 
solving the challenge of supporting syntactic interoperability, 
we have reached only halfway. We also need the description of 
the exact meaning of the data, also called metadata or semantic 
data. The challenge of semantic interoperability is to ensure 
the ability to represent, communicate and interpret the 
meaning of data automatically and in a consistent manner even 
across domain borders.  

On top of data normalization, which is assured by syntactic 
interoperability, semantic interoperability facilitates IoT 
systems to share and exchange data with unambiguous 
meaning and interpretation. Thus, it enables the different 
elements of IoT systems, such as sensors, actuators, gateways, 
IoT platforms, applications, to interpret meaning 
unambiguously from structured data in a contextual manner. 
Semantic interoperability provides a common understanding of 
the transferred data by using standard and well-defined 
vocabulary, data format and structure. The semantic meaning 
of the data can be transferred together with the raw data in a 
self-describing extension package, whose format and structure 
are independent of the used information system.  

Beyond offering the opportunity of effective and automated 
interworking among IoT systems, semantic interoperability 
also assures the possibility of data coupling and data broker 
services across IoT domains and applications. 

B. Overview of Related Approaches 
Several approaches have been arisen to deal with the 

semantic interoperability challenge. Most of them, e.g., the 
SenML [6], the EPCIS standard [9] by GS1, or the Haystack 
project [10], use a common vocabulary and a tag-based 
solution to define the meaning of the data. In this case, the 
transferred measurement data usually have an additional, tag-
based description in a special format (e.g., JSON or XML). 

These tags are supposed to define the meaning of the data for 
the system, but they do not have a structure, i.e., they do not 
use an ontology to describe the relationships between the tags. 

Some other approaches define a communication model for 
data sharing which inherently deals also, to some extent, with 
the meaning of the data. For instance, the DDS specification 
[4] describes a Data Centric Publish-Subscribe (DCPS) model 
for distributed application communication and integration as 
mentioned before. It makes possible for entities to publish data 
to other, subscribing entities. The topics identify the meaning 
of the data elements. 

The ontology-based approaches, e.g., the Smart Appliances 
REFerence (SAREF) ontology [11] by ETSI or the Base 
Ontology (BO) [12] by oneM2M, use a vocabulary with a 
well-defined structure. In these ontologies, there are classes, 
which are a set of individuals (objects and subjects) to 
describe the domain of interest. Moreover, properties represent 
the relationships between the specified domain and domain 
ranges. The ontology can also assign restrictions to each class. 
Together the classes and properties define the structure of the 
entities.  

C. Our oneM2M Base Ontology Based Approach 
In our framework, our aim is to use an ontology-based 

solution, because the structure over the vocabulary (tags, or 
metadata) can provide a standardized classification of the 
actual domain entities via the corresponding classes. Each 
class represents a category of objects, which can be well 
identified. Every class has relationships (properties), attributes 
and restrictions. In an ontology, the classes have a hierarchical 
structure, which can be as deep as needed by using subclasses 
and relationships between them. 

To achieve interoperability across domain borders is a real 
challenge because devising a general ontology which fits in 
every domain is an extremely hard if not impossible task. Our 
approach is to use a generic skeleton, which can serve as a 
‘glue’ among the domain-specific ontologies. Then defining a 
mapping between these ‘external’ ontologies and the skeleton 
cross-domain interoperability can be achieved.  

We have selected the oneM2M Base Ontology (BO) [10] as 
our generic skeleton. OneM2M defines an architectural 
approach for IoT cross-domain interoperability, where 
different applications share common service functions and 
network infrastructure based on a horizontal, common service 
layer. Moreover, oneM2M defines a semantic interoperability 
framework, which provides semantic information about 
resource contents and functionalities. This framework specifies 
the BO. 

The oneM2M BO has been developed to provide semantic 
cooperation between oneM2M and external systems. The 
external systems are described by an external ontology. The 
BO does not model domain-specific aspects, it is a general and 
minimum ontology for sensor-based IoT systems. Rather, it 
defines mapping rules for external ontologies based on the 
classes.  

In the BO, classes are directly defined by the class name and 
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the hierarchy, or defined by the properties of the individuals in 
the class. There are two main property types: (i) object 
properties describing the relationship between two classes; (ii) 
data properties describing the relationship between an object 
(class) and a concrete data value. Fig. 2 shows the classes and 
properties of the BO (the nodes denote the classes and the 
arrows denote the object properties) [10]. We omit the detailed 
description of these classes and properties due to space 
limitations (for more information consult [10]). 
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Fig. 2  OneM2M Base Ontology 
 
The mapping of the external ontologies to the Base 

Ontology follows the next two rules: (i) A is a subclass of B 
(property subClass); and (ii) A is equivalent of B (property 
equivalentClass). The inheritance from upper properties and 
classes are implied according to the mapped hierarchy as 
illustrated by the following case study. 

IV. CASE STUDY 

A. Smart Parking 
In the following, we illustrate our approach on a simple, 

smart parking scenario. In this scenario, we use the Libelium 
Smart Parking sensor solution [13]. We apply the sensor to 
detect free and available parking slots in an outdoor parking 
area. The detection method relies on the concept of measuring 
the magnetic field (in a three-axis coordinate system), which is 
substantially modified by a car standing above the sensor and 
containing a lot of metal. Based on the measured values and a 

given threshold, the sensor indicates whether the parking slot 
is empty or not.  

The sensor can send different kinds of data, which always 
consists of a Basic frame and an additive frame. The Basic 
frame contains the actual status of the parking slot (free, or not 
free), the battery state and the ID of the additive frame type, 
which can be the following: Info; Keep-alive; Daily update; 
Start frame1; Start frame2; Error. Table I summarizes the 
frame types and their content. 

Table I  Frames used by Libelium Smart Parking sensors 

Frame 
type Description Fields 

Basic Base frame • Slot status 
• Battery state 
• Additional frame type ID 

Info Status of parking 
slot is changed 

• Slot status 
• Sensor temperature 
• Magnetic field values 

Keep-
alive 

No slot status 
change, beacon to 
show operation 

• Timestamp 
• Temperature 
• Magnetic field values 

Daily 
update 

Daily summary of 
the sensor’s 
operation 

Counters wrt. the operation 
over the last 24 hours:   

• How many times the 
sensor was used 

• How many times the 
sensor transmitted data 

• How many times the 
sensor was reset 

Start 
frame1 

The first frame 
after the sensor 
starts to work 

• Temperature 
• Reference axis values 
• Battery voltage value 

Start 
frame2 

Second frame 
after the Start 
frame1 

• Beginning of the night 
mode 

• Duration of the night mode 
• Sleep time in night mode 
• Duration between two 

Keep-alive frames sent in 
night mode 

• Sleep time in normal mode 
• Duration between two 

Keep-alive frame sent in 
normal mode 

• Threshold 
Error Used when the 

sensor cannot 
send a normal 
frame 

• Error data 
• Temperature 
• Magnetic field values 
• Battery level 

 

B. L4SDD Example 
For the sake of understandability, we omit some practical 

details in the code. Our goal is to convert the data sent by the 
Libelium Smart Parking sensors to a common data format. The 
raw sensor data frame snippet we use in our example can be 
seen in Fig. 3.  
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The data in the frame are described in JSON, because our 
system appends extra information (metadata) to the raw data 
sent by the sensor. The raw data can be found in the 
highlighted data field. Our approach supports multiple input 
formats (e.g., binary, CSV). Note that the order of the data 
fields is not bound, our approach is flexible also in this regard. 
Most of the usual data sent by the sensor (e.g., ID, frequency, 
timestamp) can be converted without further processing. 
However, the raw data are sent in a hexadecimal format that 
needs to be processed. Moreover, it can happen that different 
sensors (or the same sensor at different intervals) send the data 
in different structures. We can solve this problem by writing 
multiple scripts, or by processing the data dynamically, based 
on the markers in it (not used in the presented example). 

 
Fig. 3  Parking sensor input data example 

The first step of data conversion is the format description, 
namely, how we describe the input data in our universal 
schema. This is accomplished in the Output. The schema 
description for the parking sensor example can be seen in Fig. 
4. The type definitions in the description (e.g., byte, int) are 
specific to L4SDD, and they may be mapped differently to the 
target language that we generate the code for. 

Fig. 4  L4SDD script example 

The second step is to define the processing logic in the 
script. The purpose of the Filter section (Fig. 4) is to check if 
the data can be processed by the script. In the example, we 
check the first byte of the raw data, which identifies the type of 
the message sent by the sensor. Then, the Mapping section 
contains the processing logic for the script. In the example, we 
process the raw data by using the standard operations and 
functions in the L4SDD language. The rest of the data can be 
directly copied to the structured output without further 
processing. 

The third step of the data conversion is the code generation 

for the target language(s). Later, the system will execute this 
generated code on the data accepted by the Filter. Currently, 
we generate JavaScript code (referred to as L4JS), but the 
code generation can easily be extended to other languages.  

A snippet of the generated code of our example can be seen 
in Fig. 5. The Filter and Mapping are both mapped to a 
JavaScript functions (isAccepted and processData). The 
system calls these functions with the specific sensor data. 
Note, that the structure and syntax of the generated code is 
very similar to that of the L4SDD script, because our example 
is rather simple. However, in case of more sophisticated, real-
life scenarios, our language also simplifies the syntax of the 
script. For example, functions can be mapped to more complex 
instructions in the target language (e.g., switch-cases, data 
copying), simplifying to write the processing logic in L4SDD. 

 

Fig. 5  Generated JavasScript (L4JS) code snippet 

Finally, Fig. 6 depicts the structured JSON output for the 
parking sensor example, containing the type and value 
information. The type information (on the left) contains the 
structure of the output. We can use this information later, when 
the converted data is to be stored. 

Fig. 6  JSON output for the parking sensor example  

C. Ontology Example 
We have developed an external ontology called PSO 

(Parking Sensor Ontology) for this sensor type keeping in 
mind the compatibility with, and thus the easy mapping to the 

function isAccepted(input) { 
    let decodedData = ToBase64(input.data); 
    if ((decodedData[0] & 0xF) != 2) { 
        return false; 
    } 
    return true; 

} 
function processData(input, params, message) { 
    let item = JSON(message); 
    let raw = ToBase64(item.data); 
    structuredOutput.deviceEui = item.deveui; 
    structuredOutput.port = item.port; 
    structuredOutput.tstamp = item.tstamp ; 
    structuredOutput.raw.type = ParseInt(…); 
    structuredOutput.raw.occ = ((ParseInt(…)) === 1); 
    structuredOutput.raw.measure = raw[2] * 256 + raw[3]; 
    // ... 
    structuredOutput.freq = item.freq; 
    structuredOutput.snr = item.lsnr; 
    // ... 
    return structuredOutput; 
} 

{ "ack":false, "port":4, "cls":0, "codr":"4/5","freq":"868.1", 
"tstamp": "2018-01-30T00:18:17.286593Z", "snr":"8.5",  
"deveui":"00-00-00-00-00-1a-fb-1d", "data":"ArEDwQAAAAsAAAA=", 
... } 

OUTPUT { 
  deviceEui : byte[32]; 
  port : int; 
  timestamp : Date; 
  raw: 
  { 
    type : int; 
    occ : int; 
    measure : float; 
    // ... 
  }; 
  freq : float;      
  snr : int; 
  // ... 
} 
 
FILTER { 
var decodedData = 
ToBase64(INPUT.data); 
Assert (decodedData[0] & 
0xF == 2) { // ... } 
} 
 

MAPPING { 
var item = JSON(MSG); 
 
OUTPUT.deviceEui = item.deveui; 
OUTPUT.port = item.port; 
OUTPUT.tstamp = item.tstamp; 
 
// Process raw data 
var raw = ToBase64(item.data); 
OUTPUT.raw.type = 
ParseInt(Substring(…)); 
 
OUTPUT.raw.occ = 
(ParseInt(Substring(…) === 1); 
OUTPUT.raw.measure = 
raw[2] * 256 + raw[3]; 
// ... 
 
OUTPUT.freq = item.freq; 
OUTPUT.snr = item.lsnr; 
// ... 
} 

{ 
  "deviceEui": "byte[32]", 
  "port": "int", 
  "tstamp": "Date", 
  "raw": { 
    "type": "int", 
    "occ": "int", 
    "measure": "float", ... 
  }, 
  "freq":"float", 
  "snr":"float", ... 
} 

{ 
  "deviceEui": "00-00-00-00-
00-1a-fb-1d", 
  "port": 4, 
  "tstamp": "2018-01-
30T00:18:17.286593Z", 
  "raw": { 
    "type": 2, 
    "occ": false, 
    "measure": 961, ... 
  }, 
  "freq":"868.1", 
  "snr":"8.5", ... 
} 
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oneM2M Base Ontology. We tried to incorporate all the 
functions provided by the sensor into our PSO. Table II shows 
the classes and some explanation of our PSO. 

Table II  Classes of the Parking Sensor Ontology 

Class name Description Main 
subclasses 

Device Parking sensor – 

Function Functionalities of the device 
to accomplish the tasks of the 
parking sensor 

• Measurement 
• Status 
• Control 

Command Represents an action to 
support a function 

• Start 
• Stop 
• Reset 
• Set 
• Send 

Service Function for the network – 

Property Measured values – 

Status Actual sensor status • OnOff 
• Error 

Position Actual sensor position – 

Operation Communication of the Service 
over the network 

– 

Input Input type of an Operation – 

Output Output type of an Operation – 

Unit Units of the measured values – 

 
Our Parking Sensor Ontology and the Base Ontology are 

compatible. The classes of our PSO can be easily mapped to 
the relevant classes of the BO. Fig. 7 shows this mapping. We 
used isa relationship between the PSO classes and the key BO 
classes, which corresponds to the subclass property in 
oneM2M. 

 
Fig. 7  Mapping of our PSO to oneM2M Base Ontology 

V. CONCLUSION 
In this paper, we introduced and discussed our purpose 

developed, new script language, called L4SDD, for dynamic 
sensor data description and data format conversion, and our 
cross-domain, ontology-based semantics to achieve syntactic 
and semantic interoperability across IoT domains. Moreover, 
we demonstrated these approaches in a real-life smart parking 
case study. 

As a future work, we plan to implement a context sensitive 
web based editor for L4SDD to facilitate the creation of the 
sensor data description scripts for third party users. Moreover, 
we plan to develop a method which is able to couple the 
semantic data (metadata) to the sensor data descriptors in an 
efficient manner. Finally, we intent to integrate our framework 
into our Hadoop based IoT platform called SensorHUB [14], 
thus link the sensor data descriptors to the Hadoop schema 
registry, and insert the data format conversion and semantic 
handling solutions into the data flow processing procedures of 
the IoT platform.  
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