

Abstract—Nowadays the proliferation of IoT (Internet of Things)

devices results in heterogeneous and proprietary sensor data formats
which makes challenging the processing and interpretation of sensor
data across IoT domains. Thus, to achieve syntactic interoperability
(the ability to exchange uniformly structured data) and semantic
interoperability (the ability to interpret the meaning of data
unambiguously) is still an issue under research. In this paper, we
introduce and discuss our purpose developed new script language
called Language for Sensor Data Description (L4SDD), and the basic
principles of our generic, ontology-based approach to achieve cross-
domain syntactic and semantic interoperability. Moreover, we
illustrate our solutions via a real-life smart parking case study.

Keywords— IoT, Interoperability, Data normalization, Ontology.

I. INTRODUCTION
E have been a witness today to the proliferation of IoT
(Internet of Things) devices, solutions and use case

scenarios in a myriad of domains ranging from smart home to
production digitalization/industry 4.0. However, these are
usually proprietary systems and solutions struggling with
issues and challenges when interoperability is required. A
traditional field where interoperability, or the ability of
systems to exchange information, plays an important role is
data network communication. Nevertheless, for using IoT data
across domains and scenarios a broader, cross-domain
definition of interoperability is now required [1].

A substantial step into this direction is the Virginia
Modeling Analysis and Simulation Center’s Levels of
Conceptual Interoperability Model (LCIM) [2], which defines
three categories of interoperability, such as technical, syntactic
and semantic interoperability [3]:

• Technical interoperability is the fundamental ability of a
network to exchange raw information of any kind.

• Syntactic interoperability is the ability to exchange
structured data between two or more machines. Here, data
normalization is carried out. For instance, standard data

The work presented in this paper has been carried out in the frame of

project no. 2017-1.3.1-VKE-2017-00042, which has been implemented with
the support provided from the National Research, Development and
Innovation Fund of Hungary, financed under the 2017-1.3. funding scheme.

K. Farkas is with the Department of Networked Systems and Services,
Budapest University of Technology and Economics and with NETvisor Ltd.,
Budapest, Hungary (corresponding author; phone: +36 1 3712719; fax: +36 1
2041664; e-mail: karoly.farkas@netvisor.hu).

Z. Pödör is with the Institute of Informatics and Economics, University of
Sopron, Sopron, Hungary (e-mail: podor@inf.uni-sopron.hu).

G. Mezei and F. Somogyi are with the Department of Automation and
Applied Informatics, Budapest University of Technology and Economics,
Budapest, Hungary (e-mail: [gmezei | somogyi.ferenc]@aut.bme.hu).

formats such as XML and JSON provide syntax that
allows systems to recognize the type of data being
transmitted or received.

• Semantic interoperability enables systems to interpret
meaning from structured data in a contextual manner
(often through the use of metadata).

To facilitate broad interoperability amidst these
circumstances, the Industrial Internet Consortium (IIC)
recently published the “Industrial Internet Connectivity
Framework,” or IICF [3]. The IICF redefines the traditional
OSI model by combining the Presentation and Session layers
(Layers 5 and 6) in a so-called Framework layer (Fig. 1) to
provide all of the necessary mechanisms to facilitate how data
is unambiguously structured and parsed by the endpoints.

Fig. 1 Categories of interoperability

In this paper, we focus our attention on syntactic and
semantic interoperability, because it can be safely assumed
that technical interoperability is ensured by today’s systems.
We introduce and discuss our approach to achieve syntactic
and semantic interoperability, which are at the heart of the
framework we have been developing at the moment. This
framework implements on one hand a new script language for
dynamic sensor data description and data format conversion,
on the other hand a generic, ontology-based semantics. The
framework can be used at different parts of an IoT system, thus
at the edge (running on the edge gateway) or at the IoT
platform (running in the cloud) according to the needs of the
implemented IoT scenario.

The rest of this paper is structured as follows. In Section II,
we discuss syntactic interoperability, shortly overview some
related approaches, and briefly introduce our script language.

Data interoperability across IoT domains
Károly Farkas, Zoltán Pödör, Gergely Mezei, Ferenc Somogyi

W

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 60

In Section III, we discuss semantic interoperability, give a
brief overview of some related standards and introduce our
ontology-based approach to achieve semantic interoperability.
In Section IV, we shortly demonstrate our interoperability
solutions via a smart parking case study. Finally, in Section V
we conclude the paper pointing out to some future directions.

II. SYNTACTIC INTEROPERABILITY

A. Data Normalization
Nowadays it is getting more and more common that an

application obtains its data from heterogeneous IoT devices. It
is rather challenging to support different formats of data
stemming from these devices. Thus, the data should be
normalized or converted to a common format, which can be
read by all the elements of the IoT system or even by different
IoT systems leading to syntactic interoperability.

To achieve syntactic interoperability, first we tried to create
a static description, namely a data format definition capable of
describing all variants of all sensor messages. It is worth to
mention that most of these sensors are capable of sending the
data only in their native format, i.e., they cannot convert the
data to XML or JSON. Although the static format description
seemed to be a good solution at first glance, we had to realize
that it fails when we want to apply it on previously known
industrial case studies borrowed from real-life systems. The
source of the problem was that we had many cases, where the
format was dependent on a particular fragment of the data, or
the data had (pre)processing instructions for itself. For
example, we had to support five different encoding based on
the first two bytes of the data processed. We have realized that
describing complex dependencies between the fragments and
using dozens of alternative paths would result in a highly
verbose, overcomplicated static format definition.

Therefore, we have decided to create a dynamic scheme that
is easier to customize and more expressive. This dynamic
scheme, in this context, refers to our purpose developed script
language called L4SDD, the Language for Sensor Data
Description. L4SDD not only defines an output data format,
but also specifies how the data is to be calculated from the
sensor input. The converted data can later be directly stored in
databases and processed by data analysis techniques.

B. Overview of Related Approaches
In order to achieve syntactic interoperability in cross-

industry projects, we need a common data format
understandable, readable and writable by all participants. In
order to reach this goal, some of the existing approaches focus
on defining a universal format applicable in all scenarios and
domains. In our case, this is not enough, since even if we
succeed in defining such a format, the sensors cannot convert
the data to it. Therefore, we needed a solution to transform the
original data given in various formats to the common form.

The Data Distribution Service (DDS) [4] is a popular data-
centric publish-subscribe protocol defined by OMG. It is
created to handle communication between the participants, but

it would need to create adapters for IoT devices. DDS offers a
standard to describe the data format only, the conversion to
this format is not considered.

The OPC-Unified Architecture (OPC-UA) [5] is a popular
machine-to-machine protocol for industrial automation. Its
basic idea is promising, however at the current stage it is rather
a pre-release standard than a working, platform independent
solution. Most of the issues come from heterogeneous,
incomplete implementations.

The Sensor Markup Language (SenML) [6] developed by
IETF is created to describe sensor measurements and devices,
which could fit into our scenario, but SenML allows to use
XML, JSON, Concise Binary Object Representation (CBOR)
and Efficient XML Interchange (EXI) formats only. This is not
suitable in our case because of the limitation of the sensors.

The Data Format Description Language (DFDL) [7] is
perhaps the nearest to provide a solution to our challenges. It
is a modeling language for describing general text and binary
data in a standard way. The schemas defined in DFDL allow
any text or binary data to be read from its native format and
written into a destination language. The standard has several
implementations available and it can be integrated with several
system technologies. Even by understanding its promising
capabilities, we could not use DFDL. The most important
reason for this is that DFDL implementations have a concrete
platform to apply the conversion on and we needed more
flexibility. Moreover, we wanted to optimize the conversion
and to ensure its safety. By defining a new script language with
limited, but efficient features and creating an environment
around it (e.g., compiler, execution framework), we could
achieve these goals easier.

C. The Language for Sensor Data Description
By creating L4SDD, a new, purpose developed script

language, our primary aim was to devise a dynamic data
description solution. Since L4SDD has been a newly created
language, there was no compiler available for it, thus, we have
built one based on Xtext [8].

The compiler compiles L4SDD script definitions to source
code (currently to JavaScript, but it can be an arbitrary
language). The source code is then registered by the
framework, and it is executed every time the associated sensor
sends data. More precisely the steps of data conversion
definition for a new sensor are the following: (i) a new L4SDD
script is defined that describes how the input data of the sensor
are to be read; (ii) the script is compiled to source code and the
source code is registered as a data processor algorithm; (iii) if
the sensor sends data, the framework iterates through the
registered data processors, selects the appropriate ones and
execute them; (iv) the result of the script execution is
formatted data, which are self-describing (or at least which
describe their own structure). The framework stores these data
in its database. The key to store all kinds of data is the self-
describing data structure.

L4SDD scripts consist of several sections: (i) an Output
definition that describes the format of the output data; (ii) a

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 61

Filter definition that is executed at Step #3, when the
framework tries to find scripts applicable for the certain data;
(iii) a Mapping definition that is the conversion itself, namely
how the output data are produced from the input data; (iv) the
script may also contain a Params definition, where additional
parameters can be passed (e.g., the current location), which
can affect the result of Mapping. These data are not sent by the
sensor to the framework, but the framework should add this
information as an additional input parameter for the script
when it is executed.

The Output and Params sections can use the same language
elements and syntax (they are static format descriptions), while
the Filter and Mapping parts also share their language (they
are transformation logic descriptors). The four parts together
allows us to specify the interpretation of all kinds of sensor
data to our universal, self-describing data format used in later
steps of data processing.

III. SEMANTIC INTEROPERABILITY

A. The Meaning of the Data
These days the data coming from IoT and/or smart devices

are stored and communicated in many different forms. By
solving the challenge of supporting syntactic interoperability,
we have reached only halfway. We also need the description of
the exact meaning of the data, also called metadata or semantic
data. The challenge of semantic interoperability is to ensure
the ability to represent, communicate and interpret the
meaning of data automatically and in a consistent manner even
across domain borders.

On top of data normalization, which is assured by syntactic
interoperability, semantic interoperability facilitates IoT
systems to share and exchange data with unambiguous
meaning and interpretation. Thus, it enables the different
elements of IoT systems, such as sensors, actuators, gateways,
IoT platforms, applications, to interpret meaning
unambiguously from structured data in a contextual manner.
Semantic interoperability provides a common understanding of
the transferred data by using standard and well-defined
vocabulary, data format and structure. The semantic meaning
of the data can be transferred together with the raw data in a
self-describing extension package, whose format and structure
are independent of the used information system.

Beyond offering the opportunity of effective and automated
interworking among IoT systems, semantic interoperability
also assures the possibility of data coupling and data broker
services across IoT domains and applications.

B. Overview of Related Approaches
Several approaches have been arisen to deal with the

semantic interoperability challenge. Most of them, e.g., the
SenML [6], the EPCIS standard [9] by GS1, or the Haystack
project [10], use a common vocabulary and a tag-based
solution to define the meaning of the data. In this case, the
transferred measurement data usually have an additional, tag-
based description in a special format (e.g., JSON or XML).

These tags are supposed to define the meaning of the data for
the system, but they do not have a structure, i.e., they do not
use an ontology to describe the relationships between the tags.

Some other approaches define a communication model for
data sharing which inherently deals also, to some extent, with
the meaning of the data. For instance, the DDS specification
[4] describes a Data Centric Publish-Subscribe (DCPS) model
for distributed application communication and integration as
mentioned before. It makes possible for entities to publish data
to other, subscribing entities. The topics identify the meaning
of the data elements.

The ontology-based approaches, e.g., the Smart Appliances
REFerence (SAREF) ontology [11] by ETSI or the Base
Ontology (BO) [12] by oneM2M, use a vocabulary with a
well-defined structure. In these ontologies, there are classes,
which are a set of individuals (objects and subjects) to
describe the domain of interest. Moreover, properties represent
the relationships between the specified domain and domain
ranges. The ontology can also assign restrictions to each class.
Together the classes and properties define the structure of the
entities.

C. Our oneM2M Base Ontology Based Approach
In our framework, our aim is to use an ontology-based

solution, because the structure over the vocabulary (tags, or
metadata) can provide a standardized classification of the
actual domain entities via the corresponding classes. Each
class represents a category of objects, which can be well
identified. Every class has relationships (properties), attributes
and restrictions. In an ontology, the classes have a hierarchical
structure, which can be as deep as needed by using subclasses
and relationships between them.

To achieve interoperability across domain borders is a real
challenge because devising a general ontology which fits in
every domain is an extremely hard if not impossible task. Our
approach is to use a generic skeleton, which can serve as a
‘glue’ among the domain-specific ontologies. Then defining a
mapping between these ‘external’ ontologies and the skeleton
cross-domain interoperability can be achieved.

We have selected the oneM2M Base Ontology (BO) [10] as
our generic skeleton. OneM2M defines an architectural
approach for IoT cross-domain interoperability, where
different applications share common service functions and
network infrastructure based on a horizontal, common service
layer. Moreover, oneM2M defines a semantic interoperability
framework, which provides semantic information about
resource contents and functionalities. This framework specifies
the BO.

The oneM2M BO has been developed to provide semantic
cooperation between oneM2M and external systems. The
external systems are described by an external ontology. The
BO does not model domain-specific aspects, it is a general and
minimum ontology for sensor-based IoT systems. Rather, it
defines mapping rules for external ontologies based on the
classes.

In the BO, classes are directly defined by the class name and

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 62

the hierarchy, or defined by the properties of the individuals in
the class. There are two main property types: (i) object
properties describing the relationship between two classes; (ii)
data properties describing the relationship between an object
(class) and a concrete data value. Fig. 2 shows the classes and
properties of the BO (the nodes denote the classes and the
arrows denote the object properties) [10]. We omit the detailed
description of these classes and properties due to space
limitations (for more information consult [10]).

Device

hasService hasFunction

Operation
Input

refersTo

Controlling
Function

consistsOf

Operation
Output

exposes
Function

Interworked
Device

Thing
hasThingProperty

hasThingRelation
Thing

Property

is-a

is-a

Variable

Output
DataPoint

is-a

is-a

FunctionService

Operation

hasOperation

Command

hasCommand

is-a

Aspect

Meta
Data

Area
Network

isPartOf

hasMetaData

describes

SimpleType
Variable

Measuring
Function

Input
DataPoint

exposes
Command

The oneM2M Base Ontology

GET_
Input

DataPoint

is-a

SET_
Output

DataPoint

Variable

hasOutput
DataPoint

hasInput
DataPoint

hasSub
Service

is-a

Variable

Legend: A class shown with grey
shading indicates that the same
class appears multiple times in the figure

Variable

hasSub
Structure

Variable
Conversion

hasConversion convertsTo

hasInputhasOutput

StructuredType
Variable

Is
disjoint
union

Fig. 2 OneM2M Base Ontology

The mapping of the external ontologies to the Base

Ontology follows the next two rules: (i) A is a subclass of B
(property subClass); and (ii) A is equivalent of B (property
equivalentClass). The inheritance from upper properties and
classes are implied according to the mapped hierarchy as
illustrated by the following case study.

IV. CASE STUDY

A. Smart Parking
In the following, we illustrate our approach on a simple,

smart parking scenario. In this scenario, we use the Libelium
Smart Parking sensor solution [13]. We apply the sensor to
detect free and available parking slots in an outdoor parking
area. The detection method relies on the concept of measuring
the magnetic field (in a three-axis coordinate system), which is
substantially modified by a car standing above the sensor and
containing a lot of metal. Based on the measured values and a

given threshold, the sensor indicates whether the parking slot
is empty or not.

The sensor can send different kinds of data, which always
consists of a Basic frame and an additive frame. The Basic
frame contains the actual status of the parking slot (free, or not
free), the battery state and the ID of the additive frame type,
which can be the following: Info; Keep-alive; Daily update;
Start frame1; Start frame2; Error. Table I summarizes the
frame types and their content.

Table I Frames used by Libelium Smart Parking sensors

Frame
type Description Fields

Basic Base frame • Slot status
• Battery state
• Additional frame type ID

Info Status of parking
slot is changed

• Slot status
• Sensor temperature
• Magnetic field values

Keep-
alive

No slot status
change, beacon to
show operation

• Timestamp
• Temperature
• Magnetic field values

Daily
update

Daily summary of
the sensor’s
operation

Counters wrt. the operation
over the last 24 hours:

• How many times the
sensor was used

• How many times the
sensor transmitted data

• How many times the
sensor was reset

Start
frame1

The first frame
after the sensor
starts to work

• Temperature
• Reference axis values
• Battery voltage value

Start
frame2

Second frame
after the Start
frame1

• Beginning of the night
mode

• Duration of the night mode
• Sleep time in night mode
• Duration between two

Keep-alive frames sent in
night mode

• Sleep time in normal mode
• Duration between two

Keep-alive frame sent in
normal mode

• Threshold
Error Used when the

sensor cannot
send a normal
frame

• Error data
• Temperature
• Magnetic field values
• Battery level

B. L4SDD Example
For the sake of understandability, we omit some practical

details in the code. Our goal is to convert the data sent by the
Libelium Smart Parking sensors to a common data format. The
raw sensor data frame snippet we use in our example can be
seen in Fig. 3.

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 63

The data in the frame are described in JSON, because our
system appends extra information (metadata) to the raw data
sent by the sensor. The raw data can be found in the
highlighted data field. Our approach supports multiple input
formats (e.g., binary, CSV). Note that the order of the data
fields is not bound, our approach is flexible also in this regard.
Most of the usual data sent by the sensor (e.g., ID, frequency,
timestamp) can be converted without further processing.
However, the raw data are sent in a hexadecimal format that
needs to be processed. Moreover, it can happen that different
sensors (or the same sensor at different intervals) send the data
in different structures. We can solve this problem by writing
multiple scripts, or by processing the data dynamically, based
on the markers in it (not used in the presented example).

Fig. 3 Parking sensor input data example

The first step of data conversion is the format description,
namely, how we describe the input data in our universal
schema. This is accomplished in the Output. The schema
description for the parking sensor example can be seen in Fig.
4. The type definitions in the description (e.g., byte, int) are
specific to L4SDD, and they may be mapped differently to the
target language that we generate the code for.

Fig. 4 L4SDD script example

The second step is to define the processing logic in the
script. The purpose of the Filter section (Fig. 4) is to check if
the data can be processed by the script. In the example, we
check the first byte of the raw data, which identifies the type of
the message sent by the sensor. Then, the Mapping section
contains the processing logic for the script. In the example, we
process the raw data by using the standard operations and
functions in the L4SDD language. The rest of the data can be
directly copied to the structured output without further
processing.

The third step of the data conversion is the code generation

for the target language(s). Later, the system will execute this
generated code on the data accepted by the Filter. Currently,
we generate JavaScript code (referred to as L4JS), but the
code generation can easily be extended to other languages.

A snippet of the generated code of our example can be seen
in Fig. 5. The Filter and Mapping are both mapped to a
JavaScript functions (isAccepted and processData). The
system calls these functions with the specific sensor data.
Note, that the structure and syntax of the generated code is
very similar to that of the L4SDD script, because our example
is rather simple. However, in case of more sophisticated, real-
life scenarios, our language also simplifies the syntax of the
script. For example, functions can be mapped to more complex
instructions in the target language (e.g., switch-cases, data
copying), simplifying to write the processing logic in L4SDD.

Fig. 5 Generated JavasScript (L4JS) code snippet

Finally, Fig. 6 depicts the structured JSON output for the
parking sensor example, containing the type and value
information. The type information (on the left) contains the
structure of the output. We can use this information later, when
the converted data is to be stored.

Fig. 6 JSON output for the parking sensor example

C. Ontology Example
We have developed an external ontology called PSO

(Parking Sensor Ontology) for this sensor type keeping in
mind the compatibility with, and thus the easy mapping to the

function isAccepted(input) {
 let decodedData = ToBase64(input.data);
 if ((decodedData[0] & 0xF) != 2) {
 return false;
 }
 return true;

}
function processData(input, params, message) {
 let item = JSON(message);
 let raw = ToBase64(item.data);
 structuredOutput.deviceEui = item.deveui;
 structuredOutput.port = item.port;
 structuredOutput.tstamp = item.tstamp ;
 structuredOutput.raw.type = ParseInt(…);
 structuredOutput.raw.occ = ((ParseInt(…)) === 1);
 structuredOutput.raw.measure = raw[2] * 256 + raw[3];
 // ...
 structuredOutput.freq = item.freq;
 structuredOutput.snr = item.lsnr;
 // ...
 return structuredOutput;
}

{ "ack":false, "port":4, "cls":0, "codr":"4/5","freq":"868.1",
"tstamp": "2018-01-30T00:18:17.286593Z", "snr":"8.5",
"deveui":"00-00-00-00-00-1a-fb-1d", "data":"ArEDwQAAAAsAAAA=",
... }

OUTPUT {
 deviceEui : byte[32];
 port : int;
 timestamp : Date;
 raw:
 {
 type : int;
 occ : int;
 measure : float;
 // ...
 };
 freq : float;
 snr : int;
 // ...
}

FILTER {
var decodedData =
ToBase64(INPUT.data);
Assert (decodedData[0] &
0xF == 2) { // ... }
}

MAPPING {
var item = JSON(MSG);

OUTPUT.deviceEui = item.deveui;
OUTPUT.port = item.port;
OUTPUT.tstamp = item.tstamp;

// Process raw data
var raw = ToBase64(item.data);
OUTPUT.raw.type =
ParseInt(Substring(…));

OUTPUT.raw.occ =
(ParseInt(Substring(…) === 1);
OUTPUT.raw.measure =
raw[2] * 256 + raw[3];
// ...

OUTPUT.freq = item.freq;
OUTPUT.snr = item.lsnr;
// ...
}

{
 "deviceEui": "byte[32]",
 "port": "int",
 "tstamp": "Date",
 "raw": {
 "type": "int",
 "occ": "int",
 "measure": "float", ...
 },
 "freq":"float",
 "snr":"float", ...
}

{
 "deviceEui": "00-00-00-00-
00-1a-fb-1d",
 "port": 4,
 "tstamp": "2018-01-
30T00:18:17.286593Z",
 "raw": {
 "type": 2,
 "occ": false,
 "measure": 961, ...
 },
 "freq":"868.1",
 "snr":"8.5", ...
}

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 64

oneM2M Base Ontology. We tried to incorporate all the
functions provided by the sensor into our PSO. Table II shows
the classes and some explanation of our PSO.

Table II Classes of the Parking Sensor Ontology

Class name Description Main
subclasses

Device Parking sensor –

Function Functionalities of the device
to accomplish the tasks of the
parking sensor

• Measurement
• Status
• Control

Command Represents an action to
support a function

• Start
• Stop
• Reset
• Set
• Send

Service Function for the network –

Property Measured values –

Status Actual sensor status • OnOff
• Error

Position Actual sensor position –

Operation Communication of the Service
over the network

–

Input Input type of an Operation –

Output Output type of an Operation –

Unit Units of the measured values –

Our Parking Sensor Ontology and the Base Ontology are

compatible. The classes of our PSO can be easily mapped to
the relevant classes of the BO. Fig. 7 shows this mapping. We
used isa relationship between the PSO classes and the key BO
classes, which corresponds to the subclass property in
oneM2M.

Fig. 7 Mapping of our PSO to oneM2M Base Ontology

V. CONCLUSION
In this paper, we introduced and discussed our purpose

developed, new script language, called L4SDD, for dynamic
sensor data description and data format conversion, and our
cross-domain, ontology-based semantics to achieve syntactic
and semantic interoperability across IoT domains. Moreover,
we demonstrated these approaches in a real-life smart parking
case study.

As a future work, we plan to implement a context sensitive
web based editor for L4SDD to facilitate the creation of the
sensor data description scripts for third party users. Moreover,
we plan to develop a method which is able to couple the
semantic data (metadata) to the sensor data descriptors in an
efficient manner. Finally, we intent to integrate our framework
into our Hadoop based IoT platform called SensorHUB [14],
thus link the sensor data descriptors to the Hadoop schema
registry, and insert the data format conversion and semantic
handling solutions into the data flow processing procedures of
the IoT platform.

REFERENCES
[1] V. Berrios, R. Halter, M. Harrison, S. Hollenbeck, E. Kendall, D.

Migliori, J. Petze, J. C. Stevens, “Cross-industry Semantic
Interoperability, Part I,” Embedded Computing Design, June 29, 2017.
[Online]. Available: http://www.embedded-computing.com/semantic-
interop/cross-industry-semantic-interoperability-part-one#

[2] T. Andreas, et al, “Applying the Levels of Conceptual Interoperability
Model in Support of Integratability, Interoperability, and Composability
for System-of-Systems Engineering,” Virginia Modeling Analyses &
Simulation Center, Old Dominion University [Online]. Available:
http://www.iiisci.org/journal/cv$/sci/pdfs/p468106.pdf

[3] R. Joshi, et al, “The Industrial Internet of Things Volume G5:
Connectivity Framework,” Industrial Internet Consortium, [Online].
Available: https://www.iiconsortium.org/pdf/IIC_PUB_G5_V1.0_PB_
20170228.pdf

[4] Data Distribution Service (DDS), [Online]. Available:
https://www.omg.org/spec/DDS/1.4/PDF

[5] OPC-Unified Architecture (OPC-UA), [Online]. Available:
https://opcfoundation.org/developer-tools/specifications-unified-
architecture

[6] C. Jennings, Z. Shelby, J. Arkko, Media Types for Sensor Markup
Language (SenML), [Online]. Available: https://tools.ietf.org/pdf/draft-
jennings-senml-10.pdf

[7] Data Format Description Language (DFDL), [Online]. Available:
https://www.ogf.org/ogf/doku.php/standards/dfdl/dfdl

[8] Xtext framework, [Online]. Available: http://www.eclipse.org/Xtext/
[9] EPC Information Services (EPCIS) Standard, [Online]. Available:

(https://www.gs1.org/sites/default/files/docs/epc/EPCIS-Standard-1.2-r-
2016-09-29.pdf

[10] Project Haystack, [Online]. Available: https://project-haystack.org/doc
[11] SAREF Ontology, [Online]. Available: http://ontology.tno.nl/saref/
[12] Base Ontology, Technical Specification, TS-0012-V3.7.1, [Online].

Available: http://www.onem2m.org/component/rsfiles/download-
file/files?path=Release_3_Draft_TS%255CTS-0012-Base_Ontology-
V3_7_1.docx&Itemid=238

[13] Libelium Smart Parking, [Online]. Available:
http://www.libelium.com/downloads/documentation/plug_and_sense_s
mart_parking_technical_guide.pdf

[14] L. Lengyel, P. Ekler, T. Ujj, T. Balogh, H. Charaf, “SensorHUB: An IoT
Driver Framework for Supporting Sensor Networks and Data Analysis,”
International Journal of Distributed Sensor Networks, 2015(1):1-12,
July 2015

INTERNATIONAL JOURNAL OF COMPUTERS Volume 12, 2018

ISSN: 1998-4308 65

https://tools.ietf.org/pdf/draft-jennings-senml-10.pdf
https://tools.ietf.org/pdf/draft-jennings-senml-10.pdf
https://www.gs1.org/sites/default/files/docs/epc/EPCIS-Standard-1.2-r-2016-09-29.pdf
https://www.gs1.org/sites/default/files/docs/epc/EPCIS-Standard-1.2-r-2016-09-29.pdf
https://project-haystack.org/doc

	I. INTRODUCTION
	II. Syntactic Interoperability
	A. Data Normalization
	B. Overview of Related Approaches
	C. The Language for Sensor Data Description

	III. Semantic Interoperability
	A. The Meaning of the Data
	B. Overview of Related Approaches
	C. Our oneM2M Base Ontology Based Approach

	IV. Case Study
	A. Smart Parking
	B. L4SDD Example
	C. Ontology Example

	V. Conclusion

